最近的工作引入了该日期,作为深度学习中不确定性建模的一种新方法。Epatet是一个添加到传统神经网络中的小神经网络,它可以共同产生预测分布。尤其是,使用音调可以大大提高多个输入的联合预测的质量,这是神经网络了解其不知道的程度的衡量标准。在本文中,我们检查了在分配变化下是否可以提供类似的优势。我们发现,在ImageNet-A/O/C中,谐调通常可以改善稳健性指标。此外,这些改进比非常大的合奏所提供的改进更为重要,即计算成本较低的数量级。但是,与分配稳定深度学习的杰出问题相比,这些改进相对较小。播集可能是工具箱中的有用工具,但它们远非完整的解决方案。
translated by 谷歌翻译
在机器学习中,代理需要估计不确定性,以有效地探索和适应并做出有效的决策。不确定性估计的一种常见方法维护了模型的合奏。近年来,已经提出了几种用于培训合奏的方法,并且在这些方法的各种成分的重要性方面占上风。在本文中,我们旨在解决已受到质疑的两种成分的好处 - 先前的功能和引导。我们表明,先前的功能可以显着改善整体代理在输入之间的关节预测,如果信噪比在输入之间有所不同,则引导程序为其他好处提供了额外的好处。我们的主张是通过理论和实验结果证明的。
translated by 谷歌翻译
情报依赖于代理商对其不知道的知识。可以根据多个输入的标签的联合预测质量来评估此能力。传统的神经网络缺乏这种能力,并且由于大多数研究都集中在边际预测上,因此这种缺点在很大程度上被忽略了。我们将认知神经网络(ENN)作为模型的界面,代表产生有用的关节预测所需的不确定性。虽然先前的不确定性建模方法(例如贝叶斯神经网络)可以表示为ENN,但这种新界面促进了联合预测和新型体系结构和算法的设计的比较。特别是,我们介绍了Epinet:一种可以补充任何常规神经网络(包括大型模型)的体系结构,并且可以通过适度的增量计算进行培训以估计不确定性。有了Epact,传统的神经网络的表现优于非常大的合奏,包括数百个或更多的颗粒,计算的数量级较低。我们在合成数据,成像网和一些强化学习任务中证明了这种功效。作为这项工作的一部分,我们开放源实验代码。
translated by 谷歌翻译
基于标记的光运动捕获(OMC)系统和相关的肌肉骨骼(MSK)建模预测提供了能够洞悉体内关节和肌肉载荷的能力,并有助于临床决策。但是,OMC系统基于实验室,昂贵,需要视线。一种广泛使用的替代方案是惯性运动捕获(IMC)系统,该系统具有便携式,用户友好且相对较低的成本,尽管它不如OMC系统准确。不管选择运动捕获技术的选择,都需要使用MSK模型来获取运动学和动力学输出,这是一种计算昂贵的工具,越来越多地通过机器学习(ML)方法近似。在这里,我们提出了一种ML方法,将IMC数据映射到从OMC输入数据计算出的人类上限MSK输出。从本质上讲,我们试图从相对易于获取的IMC数据中预测高质量的MSK输出。我们使用同一受试者同时收集的OMC和IMC数据来训练ML(前馈多层感知器)模型,该模型可预测IMC测量值的基于OMC的MSK输出。我们证明我们的ML预测与所需的基于OMC的MSK估计值具有很高的一致性。因此,这种方法将有助于将基于OMC的系统不可行的“实验室到现场”的技术发挥作用。
translated by 谷歌翻译
近年来,已经提出了各种解释方法,以帮助用户深入了解神经网络返回的结果,神经网络是复杂而不透明的黑盒子。但是,解释产生了潜在的侧道渠道,这可以由对对手进行安装攻击的对手所利用。特别是,事后解释方法根据输入维度根据其重要性或与结果相关性突出显示,也泄露了削弱安全性和隐私性的信息。在这项工作中,我们对各种流行的解释技术产生的隐私风险和安全风险进行了第一个系统表征。首先,我们提出了新颖的解释引导的黑盒逃避攻击,导致查询计数的10倍以相同的成功率。我们表明,可以将解释的对抗优势量化为估计梯度的总方差的降低。其次,我们重新审视通过常见解释泄漏的成员资格信息。与先前研究的观察相反,通过我们的修改攻击,我们显示了会员信息的显着泄漏(即使在更严格的黑盒子设置中,比先前的结果比先前的结果提高了100%)。最后,我们研究了解释引导的模型提取攻击,并通过大量降低查询计数来证明对抗性的增长。
translated by 谷歌翻译
可解释的深度学习模型的最新努力表明,基于概念的解释方法通过标准的端到端模型实现了竞争精度,并能够从图像中提取高级视觉概念的推理和干预,例如识别机翼颜色和喙长度用于鸟类分类。但是,这些概念瓶颈模型依赖于一组必要且充分的预定义概念,这对于诸如视频分类等复杂任务很棘手。对于复杂的任务,标签和视觉元素之间的关系涵盖了许多框架,例如,识别出具有各种抽象水平的鸟类飞行或捕获猎物不必要的概念。为此,我们提出了Codex,这是一个自动概念发现和提取模块,严格地构成了基于概念的视频分类的必要且充分的概念摘要集。 Codex从自然语言解释视频解释中确定了一系列复杂的概念摘要,从而需要预先定义一组无定形的概念集。为了证明我们的方法的生存能力,我们构建了两个新的公共数据集,这些数据集将现有的复杂视频分类数据集与其标签的简短,众包的自然语言解释相结合。我们的方法在自然语言中引发了固有的复杂概念摘要,以将概念 - 底层方法推广到复杂的任务。
translated by 谷歌翻译
显示过次分辨率化,导致在亚组信息的各种设置下在罕见的子组上的测试精度差。为了获得更完整的图片,我们考虑子组信息未知的情况。我们调查模型规模在多种设置的经验风险最小化(ERM)下最差组泛化的影响,不同:1)架构(Reset,VGG或BERT),2)域(视觉或自然语言处理)3)模型尺寸(宽度或深度)和4)初始化(具有预先培训或随机重量)。我们的系统评价显示,模型大小的增加不会受到伤害,并且可以帮助所有设置的ERM下的最差群体测试性能。特别是,增加预先训练的模型大小一致地提高水鸟和多液体的性能。当子组标签未知时,我们建议从业者使用更大的预训练模型。
translated by 谷歌翻译